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Abstract

This paper presents a natural language processing ap-
proach to building a medical chat-bot based on real pa-
tient and doctor conversations. Utilizing these real conver-
sations, I aim to build a generative model that can return
accurate and informative medical advice to the everyday
person. Although this is not aimed to replace a doctor or
a medical professional, this research proves that language
models can be tuned to further the progress of medical as-
sistance through natural language processing.

1. Introduction

The integration of natural language processing (NLP)
into healthcare has accelerated the development of intel-
ligent systems capable of supporting both patients and
medical professionals. Conversational AI models are in-
creasingly being applied to simulate patient-doctor interac-
tions, providing accessible health information and assisting
with preliminary assessments. Despite these advancements,
achieving a well-rounded and medically accurate response
remains a significant challenge, particularly when balancing
the generalization power of large language models (LLMs)
with the specificity required in healthcare applications(8).

This research explores the effectiveness of 3 LLMs:
GPT-2, LLaMA 3.2-3B, and GPT-3.5 Turbo, fine-tuned on a
dataset consisting of real patient and doctor interactions. To
enhance the relevance and contextual accuracy of generated
responses, I integrated a BERT-based retrieval model, lever-
aging its strength in identifying similar conversational con-
texts. The final ensemble model combines the fine-tuned
GPT-3.5 Turbo’s generative capabilities with BERT’s rec-
ommendation outputs, aiming to produce responses that are
not only informative but also contextually aligned with pre-
vious medical conversations.

The study evaluates the models on key NLP metrics,
such as the METEOR Score, BERTScore, Cosine Similar-
ity, etc., while discussing the practical implications of de-
ploying such models in healthcare applications. The project
will be successful if these key metrics improve with the fine-
tuning and ensemble approaches. The goal for this research

is to be deployed for world-wide accessibility, instead of be-
ing a tool just for medical professionals. Because of this, I
created a virtual avatar and model API to run as if talking to
a medical professional. I emphasize that these systems are
not substitutes for professional medical advice, rather serve
as tools for improving access to preliminary healthcare in-
formation. Always consult with a medical professional with
any health related concerns.

2. Background
With the rapid advancements in large language models

(LLMs) (11), significant research efforts have been directed
toward their applications in the medical domain (8). Among
these, Google introduced Med-PaLM and Med-PaLM 2,
medical-specific models extensively studied through fine-
tuning and ensemble modeling techniques. Leveraging en-
semble refinement and conducting rigorous human eval-
uations with both physicians and laypeople, Med-PaLM
2 achieved state-of-the-art performance on various med-
ical benchmarks, including MedQA and PubMedQA, by
enhancing medical reasoning and aligning responses with
clinical best practices (13).

Research into efficient fine-tuning techniques has shown
that scaling transformer-based models can yield significant
improvements when tailored to their size and architecture
(14).

Accordingly, this study selected three transformer-based
models of small, medium, and large sizes, each fine-tuned
using strategies optimized for their respective scales. The
goal is to build off the fine-tuning research and apply a dif-
ferent perspective of Google’s ensemble modeling to further
medical interactions with language models.

3. Data
This research utilized a subset of the MedDialog dataset,

comprising approximately 24,000 anonymized healthcare
dialogues sourced from online doctor platforms such as
Icliniq, HealthcareMagic, and HealthTap (7). Each entry
in the dataset represents a unique interaction between a pa-
tient and a doctor, formatted as a patient question followed
by a medical professional’s response. An example of such
an interaction is illustrated in figure 1. As shown in figure 2,
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the distribution of text and character lengths reveals that pa-
tient questions, averaging 38.4 words, are typically shorter
than doctor responses, which average 101.83 words.

For preprocessing, formatting inconsistencies and unex-
pected interaction diction were retained to ensure the model
could handle messy user input. The dataset was split into
training (80%), testing (10%), and validation (10%) subsets
for effective model evaluation. All text was tokenized using
the corresponding tokenizer for each model to ensure input
compatibility (11).

Although referenced in the Limitations section, it is im-
portant to acknowledge that since the dataset consists of on-
line medical consultations, it might not fully represent the
diverse healthcare contexts of global patient queries. This
serves as a start to prove the applications of natural language
processing for medical applications.

4. Methods
This research used a a hybrid approach, combining both

retrieval-based and generative models to maximize the ac-
curacy, relevance, and contextual appropriateness of re-
sponses in patient-doctor conversations. Unlike Google’s
approach, which focuses on evaluating medical-specific
language models using multiple-choice-style medical tests
(13), this project aims to adopt a more conversational
methodology for medical Q&A. To achieve this, widely
available language models with existing conversational
training were selected and fine-tuned specifically for the
medical domain. Then, utilizing a BERT model to feed in
similar conversations as context, the model’s output could
significantly improve.

BERT (Bidirectional Encoder Representations from
Transformers) was selected as the recommendation model
to retrieve similar historical patient-doctor interactions. Its
strong contextual understanding and ability to model bidi-
rectional context make it ideal for identifying relevant re-
sponses in healthcare dialogues, as apposed to a standard
approach such as base cosine similarity.

Generative models were selected to address the task of
producing fluent, coherent, and contextually appropriate re-
sponses based on patient queries. Each model was fine-
tuned to specialize in medical dialogue generation.

GPT-2 was chosen for its lightweight architecture to pro-
vide a baseline for generative performance against more ad-
vanced models. LLaMA 3.2-3B was selected as a cutting-
edge open-source medium-sized model to balance the com-
putational efficiency and response quality in the specific
healthcare domain. Finally, GPT-3.5 Turbo was selected
due to its large model size, offering more contextually
aware responses.

A unique contribution of this study is the hybrid ap-
proach, combining the strengths of BERT’s retrieval ca-
pabilities with the generative power of fine-tuned GPT-

3.5 Turbo. This retrieval-augmented generation (RAG) ap-
proach would allow for further context in aiding the model’s
response(5). As further discussed in the Limitations section,
this should theoretically lower the times the model needs
to be re-trained with new medical research being released.
BERT ensures the generative model starts with high-quality,
relevant input, improving response accuracy.

4.1. Fine-Tuning

The approach to fine-tuning was different for each of
the generation models due to their distinct architectures(14).
For speed, all the open-source models were fine-tuned with
a NVIDIA GeForce RTX 4070 GPU.

For GPT-2, the training process utilized a traditional ap-
proach, where the model was fine-tuned using a standard
AdamW optimizer and gradient accumulation steps to man-
age large batch sizes. The focus was on efficient training
through gradient scaling and a learning rate scheduler to
gradually decrease the learning rate during training (11).
Additionally, a checkpoint system was implemented to save
model states periodically, and memory management tech-
niques were applied, including gradient clipping and auto-
matic mixed precision (AMP) to optimize GPU memory us-
age. The initial experiments showed that a simple genera-
tive model like GPT-2 provided a useful baseline but lacked
the contextual depth needed for effective medical dialogue.
This is evident in Google’s research as well as their model
needed to grow to Med-PaLM 2 before they were able to hit
their impressive benchmarks.

For the larger models, full tuning on this scale is
not doable in a reasonable amount of time, as dis-
covered when attempting a similar approach as GPT-
2. Therefore parameter-efficient fine-tuning would offer
a different approach to fine-tuning with similar response
advancements(3). The LLaMA model leveraged a LoRA
(Low-Rank Adaptation) approach, which introduces a more
memory-efficient fine-tuning technique by adapting only a
small subset of the model’s parameters, rather than updat-
ing all of them(6). This was especially crucial given the
large size of the LLaMA model - 3 billion parameters, leav-
ing the training parameters to only 2,293,760. LoRA’s low-
rank decomposition was applied specifically to the query
and value projections in the attention layers, which are key
to model performance. The optimizer for LLaMA used a
custom configuration to handle the low-memory setup and
involved more advanced GPU memory management, such
as dynamically clearing the cache, ensuring smooth training
with limited resources.

Finally, the OpenAI model GPT3.5-Turbo was fine-
tuned through OpenAI’s API, making the fine-tuning pro-
cess significantly faster and easier. The difficulty came in
the setup of the data for training preparation, as OpenAI
is very particular about the format. For this approach, I

2



Patient Query:
“Can I go out in the sun while taking 875 mg dose of amoxicillin?”

Doctor Response:
“Amoxicillin is one of the antibiotics that is not sun sensitive.”

Figure 1. One example of a patient query and doctor response.

Figure 2. Distribution of text and character lengths split by both patient questions and doctor responses.

used the default hyperparameters that OpenAI suggested.
The only customization for this fine-tuning process was the
customization of the contexts. Although I didn’t generate
a model to update these prompts in the training process,
the following paper(10) proves the importance of prompt-
ing to help frozen language models. I played with differ-
ent context roles in the training process with an even split
of the following 4 messages: “You are a medical expert
trained on giving advice to patients that are in need of assis-
tance”, “You are an empathetic medical expert here to help
with health concerns”, “You are a medical expert particu-
larly experienced with interacting with patients and guiding
them through their concerns”, and “You are a medical ex-
pert tasked with conversing with patients and helping them
discover solutions to their concerns.” The single fine-tuning
job was just under $30.

Of all the training, the most unusual loss and accuracy
metrics came from the fine-tuning of the GPT-3.5 Turbo
model, for information on the other models refer to the
project repository. The graph of training accuracy, shown in
figure 3, shows significant fluctuations over the training it-
erations, ranging roughly between 0.45 and 0.75. The over-
all trend is fairly stable, with the mean (red line) hovering
around 0.57 and the median (green line) close to the mean.
The large variance in accuracy suggests that the model’s
predictions vary widely between batches. This could indi-
cate that the dataset contains a high degree of variability, or
that the batches themselves are diverse in difficulty, caus-

ing the accuracy to swing from one batch to another. An
unusual observation is that the accuracy does not show a
clear upward trend over time. This might suggest either a
learning rate that is too high, causing instability and pre-
venting consistent improvement, or the model has poten-
tially reached a plateau in learning. It could further mean
that it is struggling to generalize on the training data.

The graph of training loss also exhibits considerable os-
cillations, with values ranging approximately between 1.0
and 3.0, shown in figure 4. However, unlike the accuracy
graph, there is a slight downward trend in loss initially, fol-
lowed by more stable oscillations around a mean (red line)
of approximately 1.8 and a median (green line) very close to
the mean. An interesting observation here is that while the
loss decreased early on, it did not show significant further
improvement, suggesting that the model quickly converged
to a local minimum. The persistent oscillations could be due
to batch variability, where different batches contain varying
levels of difficulty or imbalance, or the use of a large or
inconsistent learning rate, leading to fluctuating gradients.
A potential need for further fine-tuning of hyperparameters
like learning rate, batch size, or optimizer type could be ev-
ident. This means that the hyperparameters suggested from
OpenAI would need re-thinking in order to see improve-
ment. The training instability in the GPT-3.5 Turbo model
can be further seen in the Results section.

3



Figure 3. Fine-tuning training accuracy for the OpenAI GPT-3.5
Turbo model.

Figure 4. Fine-tuning training loss for the OpenAI GPT-3.5 Turbo
model.

4.2. Ensemble Model Building

Following fine-tuning, the ensemble model was con-
structed. Evident from the limitations of GPT-2 fine-tuning,
this hybrid approach was used for contextual grounding
when leveraging generation models. The process was rel-
atively straightforward: a test example or user query was
first processed by the BERT model to retrieve highly similar
conversations from the training data, based on the similar-
ity scores that BERT would generate. Although modifiable,
this was producing the 3 most relevant conversations. These
retrieved conversations were then used as additional context
for the fine-tuned GPT-3.5 Turbo model, which generated a
response to the user query. This integration aimed to en-
hance response quality by leveraging the contextual infor-
mation provided by BERT.

5. Results and Discussion
The performance of each model was evaluated using key

metrics to assess their ability to generate contextually ac-
curate, fluent, and relevant responses in patient-doctor dia-
logues. The evaluation focused on metrics that emphasize
semantic alignment, language fluency, and contextual co-
herence.

BERTScore was selected for its ability to measure the
similarity between generated responses and references us-
ing contextual embeddings rather than relying on exact
word matching. This approach is particularly valuable in
healthcare dialogues, where semantic accuracy is more im-
portant than lexical precision. By evaluating precision, re-
call, and F1, BERTScore provided a comprehensive view of
how well the models captured both the accuracy and com-
pleteness of the information in the dialogues (15).

METEOR was included to capture semantic matching
beyond surface-level similarity. Its emphasis on synonymy,
stemming, and paraphrasing made it particularly useful for
evaluating the flexibility and natural variation in language
expression, which are essential in healthcare communica-
tion. This metric highlighted the models’ ability to produce
responses that conveyed the intended meaning even when
phrasing differed from the reference (1).

ROUGE metrics offered insight into the overlap of n-
grams between the generated and reference responses, fo-
cusing on both individual word matching and longer se-
quences. ROUGE-1, ROUGE-2, and ROUGE-L were used
to assess how closely the models replicated key terms and
content structures, providing a more surface-level evalua-
tion of the generated text. However, in open-ended dialogue
tasks, these metrics often revealed the trade-off between ex-
act replication and the need for varied, natural language out-
put (2).

Cosine similarity provided an overall measure of seman-
tic alignment by comparing the embeddings of the gener-
ated and reference responses. This metric was particularly
important for understanding how closely the meaning of the
generated text aligned with the reference, regardless of the
specific words used. It served as a strong indicator of the
models’ ability to maintain consistency in meaning while
allowing for flexibility in language (4).

Overall, the results demonstrated that semantic metrics
like BERTScore and cosine similarity were the most rel-
evant for evaluating generative models in the context of
healthcare dialogues. These metrics emphasized the impor-
tance of producing responses that were contextually appro-
priate and semantically accurate, rather than focusing solely
on exact word overlap. The ROUGE and METEOR scores,
while informative, underscored the challenges of capturing
exact n-gram sequences or synonyms in open-ended genera-
tion tasks, reinforcing the need to prioritize semantic coher-
ence. Additional metrics and detailed results are available
in the project’s repository for further reference.

The median metrics for each of the generation models
can be found in tables 1 and 2 for the baseline and fine-
tuned results, respectively.

The results reveal significant improvements across key
metrics following fine-tuning, highlighting the impact of
task-specific training on the generation models’ perfor-
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mance. METEOR shows notable gains for each model, with
LLaMA 3.2-3B exhibiting the most substantial increase
from 0.0925 to 0.2114. This indicates that fine-tuning en-
hanced the models’ ability to capture nuanced variations in
language. It is important to note, however, the overall low
scores for each model in the METEOR category. This is
typically because of the heavily weighted lexical choices
that METEOR emphasizes. Meaning, that the low score in-
dicates low word-level exact matches or synonyms. This is
okay as long as the overall meaning (described in the other
evaluation metrics) stays the same.

BERTScore metrics also demonstrate consistent im-
provements. LLaMA 3.2-3B and GPT-2 show enhanced
BERTScore scores, suggesting better retrieval of relevant
information while maintaining precision. Notably, GPT-3.5
Turbo exhibited a minor decrease in each BERTScore met-
ric post-fine-tuning. However, due to the size of the model,
this suggests that refined hyperparameters are needed im-
prove it.

ROUGE F1 scores, which capture surface-level n-gram
overlap, improved for all models, with LLaMA 3.2-3B
showing the most significant increase from 0.1663 to
0.2655. This suggests that fine-tuning contributed to better
lexical similarity, even in an open-ended dialogue setting
where exact matches are less common.

Cosine similarity, which assesses semantic coherence,
exhibited the most substantial improvement for LLaMA
3.2-3B, increasing from 0.9204 to 0.9544. This highlights
the model’s enhanced ability to generate responses that
align closely with the reference embeddings. This is evident
in the initial LoRA paper as well, indicating the success
of the fine-tuning approach (6). Interestingly, the ensem-
ble model, combining BERT retrieval with GPT-3.5 Turbo
fine-tuned, demonstrated a minor increase in overall perfor-
mance, suggesting integration of retrieval-based and gener-
ative approaches(5). Although it was not as significant as
expected, improving the fine-tuning of such a large model
could offer better results.

Fine-tuning not only improved the models’ ability to
generate contextually appropriate and semantically rich re-
sponses but also showcased the versatility of combining
retrieval-based and generative approaches in the ensemble
model, refer to figure 5 for an example output. Looking
through all the metrics analyzed, it is clear that the LLaMA
3.2-3B fine-tuned model was the best at delivering consis-
tent and effective responses and showed the most improve-
ment upon tuning. More model output examples and full
metric details can be found in the project repository, at-
tached at the end.

6. AI Avatar
To make this research accessible to a global audience,

merely presenting model outputs and statistics was insuffi-

cient. Therefore, I created a website featuring an AI avatar
powered by the fine-tuned GPT-3.5 Turbo model, chosen
for its integration via the OpenAI API. The avatar, devel-
oped using HeyGen technology, presents a virtual persona
for interactive conversations. A demo showcasing my inter-
action with the avatar, where I discuss concerns about a sore
throat, is available in the project repository. Additionally,
figure 6 includes a screenshot of the interactive platform.

7. Limitations
While the model results demonstrate promising improve-

ments following fine-tuning, there are several limitations to
consider. First, the dataset used in this study, though di-
verse, was curated from specific sources such as Icliniq,
HealthcareMagic, and HealthTap. As a result, the models
may not generalize well to conversations from other health-
care platforms or less formal patient-doctor interactions,
limiting the external validity of the findings.

Another limitation lies in the reliance of the evaluation
metrics. Although these metrics provide valuable insights
into surface-level similarity and semantic alignment, they
may not fully capture the nuances of healthcare dialogues,
such as the importance of actionable advice, which is cru-
cial in real-world patient-doctor interactions. Furthermore,
the models are assessed on their ability to generate contex-
tually relevant responses, but the absence of patient-specific
factors, such as emotional state or medical history, might
hinder their ability to provide truly personalized feedback.

While fine-tuning the models improved their perfor-
mance on the testing data, it is unclear how they would per-
form on real-world, out-of-distribution data. The dataset
does not include disease labels or medical expertise annota-
tions, which means the models may struggle with providing
medically accurate advice, making them unsuitable for crit-
ical healthcare applications.

Lastly, with new research, the models will need to be
re-trained to give the most up-to-date accurate advice. Al-
though the additional computational cost required for re-
training these models may limit their scalability in real-time
applications, especially in environments with resource con-
straints. Although the ensemble model seeks to address this,
by feeding in relevant information as context to the model,
until that information would be non-conversational and in-
clude medical facts, re-training would be needed.

8. Next Steps
Improvement of each of the generation models can come

with a grid-search over the hyperparameters, tweaking the
temperature output parameter to be more or less creative,
collecting more data, including training on medical research
outside of just conversations, prompt engineering for the
context/input to the model, and a medical fact checker
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Model METEOR BS Precision BS Recall BS F1 ROGUE F1 Cosine Similarity
GPT-2 0.0830 0.8503 0.8174 0.8340 0.1429 0.8962

LLaMA 3.2-3B 0.0925 0.8355 0.8156 0.8254 0.1663 0.9204
GPT-3.5 Turbo 0.1533 0.8536 0.8380 0.8434 0.2313 0.9252

Table 1. Median baseline metrics on each of the generation models. Note that BS stands for BERTScore. Additionally, the ensemble model
was only run with the fine-tuned version of GPT-3.5 Turbo and therefore, there is no baseline version of it.

Model METEOR BS Precision BS Recall BS F1 ROGUE F1 Cosine Similarity
GPT-2 0.1241 0.8504 0.8293 0.8392 0.1956 0.9194

LLaMA 3.2-3B 0.2114 0.8379 0.8414 0.8412 0.2655 0.9544
GPT-3.5 Turbo 0.1795 0.8201 0.8356 0.8301 0.2173 0.9330

Ensemble 0.1894 0.8201 0.8357 0.8252 0.1997 0.9310

Table 2. Median fine-tuned metrics on each of the generation models. Note that BS stands for BERTScore.

through medical research in sites hosted online such as
PubMed (12) to verify any information before any output.

The avatar was used as a human-like approach to conver-
sation, and can be improved upon by training on real world
medical professionals. With significant improvement, com-
puter vision can be investigated to have the patient upload
images or ask for analysis into medical details, visually. Re-
cently an article showcasing generation of synthetic medical
images to improve medical classifiers could prove useful for
this type of advancement, as training a large medical classi-
fier would be necessary(9).

9. Conclusion
This research explored the development of several nat-

ural language processing models, including BERT, GPT-
2, LLaMA 3.2-3B, GPT-3.5 Turbo, and an ensemble ap-
proach, with the goal of generating accurate and contextu-
ally relevant responses based on real patient-doctor inter-
actions. The goal was to enhance conversational AI in the
healthcare domain, accessible by anyone with an internet
connection. Each model was fine-tuned using a subset of
the MedDialog dataset(7) and evaluated for semantic under-
standing to assess improvements in sentence-level compre-
hension. The model that showed the most improvement and
offered consistently accurate responses was LLaMA 3.2-
3B, improving in every metric significantly and resulting in
an impressive average score of 0.9544 on cosine similarity.
Additionally, although minimal improvements, the ensem-
ble approach proved effective at generating responses with
contextual hints at doctor responses to similar queries. The
improvements needed to make this project more stable lie in
the ability to measure and train medical research and facts,
improving this approach from conversational to medically
precise.

As stated before, this project does not seek to replace
medical professionals, but aims to further the medical appli-
cation of language models for preliminary medical conver-

sations usable by anyone! All of the code for the project and
a demo showcasing the avatar can be found in the project
repository.
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A. Additional Material
For more information on the results, metrics, and setup

refer to the project repository’s notebook folder. An exam-
ple output of the ensemble model can be seen in figure 5. A
screenshot showing an interaction with the AI avatar yield-
ing the model response can be seen in figure 6.
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Patient Query:
“What is hypotension?”

Model Response:
“Hypotension is low blood pressure. Very low blood pressure to the point that not enough pressure to maintain
blood flow to vital organs. There are different levels of low blood pressure; the most severe form is called shock.”

Expected Response:
“Hypotension means low blood pressure.”

Figure 5. Example output from an entry in the test set from the ensemble model - BERT and GPT-3.5 Turbo. The output is clearly aligned
to the expected response, and even gives more detail than the doctor. Although it is possible that the originating model was trained on
something similar, it is important to note the improving metrics that fine-tuning yielded.

Figure 6. Screenshot showing the interactive avatar, where you can interact with the model, I asked it a question regarding what can happen
if a sore throat gets worse. Below the avatar, you can see the response from the model.
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